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A numerical study of the roll-up of a finite vortex sheet 

By D. W. MOORE 
Department of Mathematics, Imperial College, London 

(Received 21 August 1973) 

A point-vortex representation is used to study numerically the evolution of an 
initially plane vortex sheet. By introducing a tip vortex to represent the tightly 
rolled portion of the vortex sheet, the chaotic motion which was a feature of some 
earlier studies is eliminated and the details of the outer portion of the spiral are 
calculated. The rate of rolling up is calculated and is shown to be governed by 
the analytically predicted similarity law of Kaden during the initial stages of 
the rolling up. The calculations are continued until 99% of the vorticity has 
been rolled up, at which stage the spiral displays a marked ellipticity. 

1. Introduction 
At time t = 0 a vortex sheet of infinite length whose constituent vortex lines 

are parallel to the z axis intersects the 2, y plane in the strip y = 0, -a < z < a. 
At this instant the vortex-sheet strength w(x)  is given by 

w(x)  = Z U X ( a 2 - X 2 ) - * ,  (1.1) 

where U is the velocity with which the sheet is instantaneously moving in the 
y-decreasing direction, The rectangular axes Oxyz are chosen so that the fluid 
at  infinity is at  rest. 

The fluid is incompressible and if viscosity is neglected the problem of de- 
termining the evolution of the vortex sheet appears to be straightforward. The 
flow field is two-dimensional and the problem can be discretized by subdividing 
the strip and replacing each subdivision by a point vortex at its vorticity centroid. 
The evolution of the sheet is followed by integrating forwards in time the equations 
which give the velocity of each point vortex as a function of the position of 
the others. 

This calculation was first attempted by Westwater (1935), who chose his 
subdivisions so that the strengths of the point vortices were of equal magnitude. 
A spiral structure for the vortex sheet near the tips emerged and the rate of 
rolling up of the vortex sheet could be estimated. 

Unfortunately, attempts to reproduce Westwater’s results by Takami ( 1964) 
and Moore (1971, subsequently referred to as I) have not been successful. The 
vortices moved chaotically, no spiral structure emerged and the rate of roll-up 
could not be estimated. 

Now the analytical work of Kaden (1931) makes it clear that smooth spirals 
form at the ends of the vortex sheet, so that one has to try to understand why 
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this spiral structure was not obtained by Takami or in I. There are two possi- 
bilities. 

The first is that the exact solution of the discrete system converges to t,he 
solution of the equations governing the continuous sheet as the number of point 
vortices tends to infinity. The chaotic motion would then be due to a failure of 
the numerical method to  integrate the discrete system correctly. This failure 
could spring from either the use of too crude an integration method- for example, 
the time step might be too large-or because the discrete equations themselves 
are numerically unstable in the sense that small perturbations, always present 
in a numerical calculation, are rapidly amplified. 

The second possibility is that the exact solution of the discrete system does not 
converge to the solution of the equations governing the continuous sheet as the 
number of point vortices tends to infinity. 

I n  I an attempt was made to rule out the first possibility. Sixteen-figure 
arithmetic was used in conjunction with the fourth-order Runge-Kutta integra- 
tion scheme. Provided that the time step is sufficiently small this method is stable 
and it was possible to follow 40 complete revolutions of a vortex pair with a 
fractional error of only about in the co-ordinates. In repeating Westwater’s 
calculations, the time step was chosen to be much smaller than the orbital 
period of the two closest vortices. Given that this condition was satisfied, the 
solution was insensitive to  the actual choice of time step. Chaotic motion quickly 
developed, just as reported by Takami, and fair agreement between the actual 
vortex positions was noted, confirming that the discrete equations were being 
correctly integrated. Moreover, if a t  some instant the vortex strengths were 
instantaneously reversed, the chaotic state would unscramble and the vortices 
would return to their original positions. 

Thus it was concluded in I that it was the discretization itself which was 
responsible and this was confirmed by showing that increasing the number of 
vortices made matters worse. The reason for Westwater’s success in obtaining 
a spiral structure was not found. However, an interesting suggestion has been 
made by Chorin & Bernard (1972), which is that a combination of Euler integra- 
tion and large time steps, as employed by Westwater, will prevent chaotic 
motion, and this is borne out by the recent work of Clements & Maul1 (1973), who 
used a time step comparable with the orbital period of the closest vortices. 
Chorin & Bernard do not advance an explanation of the inhibition of chaotic 
motion, but it is possibly due to the fact that such an integration procedure 
quickly increases the separations between the vortices near the ends of the sheet 
to much greater than their true values. This in turn will tend to suppress the 
orbiting motion of vortex pairs which was a prominent feature of the chaotic 
motion found in I. Alternatively, one can regard the augmented separations as 
fulfilling a function similar to Chorin & Bernard’s cut-off, described in detail 
below. 

This method of dealing with the problem cannot be regarded as satisfactory 
because sizeable errors are introduced. As was pointed out by Crow (1965), Euler 
integration introduces a cumulative error when applied to vortex motion. For 
example, one can show, by studying the finite-difference equations analytically, 
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that, when applied t o  a pair of vortices of equal strengths, Euler integrationleads 
to a vortex separation which continually increases instead of remaining constant. 
Moreover, if the time step is comparable with the orbital period, large errors 
are quickly introduced. It is clear that Clements & Maull’s results (whilst 
probably adequate for their purpose) are not accurate in the spiral region because 
the authors found that a change of time step caused a change in the shape of 
the spiral comparable with its radius. 

The failure of the discretization must be a consequence of the nature of the 
motion near the tips of the rolling-up vortex sheet. One explanation, which in 
essence has been proposed by several authors, arises from the spiral shape of 
the sheet. If the distance between turns is much less than the typical arc distance 
between the constituent vortices then there will be instants when vortices on 
neighbouring turns will come very close together. This will lead to a spuriously 
large interaction between this pair which might disrupt the orderly evolution 
of the system. 

The first study of roll-up which incorporated a recipe for suppressing chaotic 
motion based on this diagnosis was that of Nielsen & Schwind (1971), who 
combined two vortices which came closer to each other than a critical distance 
(which was comparable with the initial separation of neighbouring vortices) into 
a single vortex. This vortex was at  the centroid of the pair and had a strength 
equal to the total strength of the pair. Smooth roll-up was reported, but no 
details were given. A different recipe was employed by Chorin & Bernard (1972). 
They modified the velocity field of each point vortex in such a way that it had 
its correct value outside a cut-off radius, but remained bounded inside this 
radius. The cut-off radius was chosen to be of the order of the separation of 
nearest neighbours in the initial state. The authors regard their modification 
as being equivalent to the introduction of a fictitious viscosity, because the 
vorticity of each point vortex is spread out in a circle of radius equal to the 
cut off radius. 

To describe their results in more detail, it is convenient to introduce a dimen- 
sionless time t* defined by 

clearly a/U is the natural time scale of the system. Chorin & Bernard found smooth 
spirals for t* < 1.0, though at  t* = 1.0 their results possess unrealistic features. 
I n  particular, the vortices, which were originally equidistant, do not display 
steadily increasing separation as the spiral is entered, whereas Kaden’s analysis 
suggests that the sheet is increasingly stretched towards the centre of the 
spiral. At t* = 6.5 the spiral structure has disappeared and the motion appears 
chaotic. 

A similar cut-off has been employed by Kuwahara & Takami (1973), who 
used instead the velocity field of a diffusing line vortex. Smooth roll-up was 
obtained up t o  t* = 0.5, the largest value considered. However, some dependence 
of the results on the magnitude of the coefficient of viscosity used is evident, and 
it is not clear which value is most appropriate. 

A second possible explanation of the failure of the discrete representation 
arises out of an examination of Kaden’s results. When t* <i 1 the spirals at the 

t* = Utla; (1.2) 
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ends of the vortex sheet evolve independently and Kaden showed analytically 
that the vortex sheet at either tip has the form of a spiral whose polar equation is 

r c c  ( t* /O)%, (1.3) 

Thus any attempt to replace the sheet by a finite number of point vortices will 
cease to be adequate sufficiently near the centre of the spira,l, since the spiral has 
an infinite number of turns. 

This is obvious and Westwater pointed out that no detail of the inner portion 
of the spiral could be found by his method. What is less obvious is that the failure 
of the discretization is not local. There is no reason to assume that the vortices 
representing the inner spiral portion of the sheet maintain their correct positions 
on the vortex sheet but, even if they did, the vortices in the outer part of the 
sheet would not experience the true velocity field induced by the inner spiral. 
This velocity field varies smoothly with time and is almost axisymmetric, whereas 
the velocity field due to these inner point vortices is irregularly fluctuating and 
is non-axisymmetric. Thus the outer vortices, which one might have hoped 
would represent correctly the outer part of the sheet, respond by themselves 
starting to move irregularly. Thus chaotic motion spreads to ruin the calculation, 
the long-range nature of the coupling between individual vortices facilitating 
the process. 

If this diagnosis is correct it must be possible to remove chaotic motion by 
representing the inner turns in a way which removes the spurious fluctuations. 

In  0 2 a method of preventing chaotic motion which springs from the second 
diagnosis is described and the results obtained are discussed in Q 3. 

2. The numerical method 
The velocity field of the inner portion of the spiral is very nearly axisymmetric 

and, instead of trying to represent this by a finite number of point vortices 
scattered about on the spiral, it is better to represent it by a single vortex at  the 
centre of the spiral. This representation of the inner portion of a spiral vortex 
sheet was used by Smith (1968) in his study of the formation of the leading- 
edge vortex over a delta wing. 

This suggests the following approach. One can suppose that the velocity field 
of a turn of the spiral is adequately represented by N or more point vortices, 
where the integer N has to be determined by trial and error. If a turn proves to 
contain less than N point vortices, one gives up the attempt to describe it 
individually, but represents instead the net effect of all such turns by a single 
vortex of appropriate strength at  the centre of the spiral. A practical method of 
accomplishing this is described below. 

The vortex sheet is represented by 2M point vortices whose motion can be 
followed numerically; the integration method used and the ways in which it 
was tested are described briefly above and in more detail in I. The co-ordinates 
(x( i ) ,  y(i)) of the ith point vortex with respect to the fixed axes defined in 3 1 are 
denoted by a two-dimensional vector x(i), where i runs from I to 2M and where 
in the initial configuration i increasing means x ( i )  increasing. The vortex whose 



The roll-up of a Jinite vortex sheet 229 

co-ordinate is x( 1) is taken to represent the net effect of the inner portion of the 
spiral which forms at the left-hand tip of the sheet. The angle 8 between the 
vectors x(2)-x(3) and x(3)-x(4) is examined a t  each time step as the integration 
proceeds and when this angle exceeds 0, = 360°/N, x(2)  and x( 1) are combined 
to form a new tip vortex, with concomitant changes a t  the right-hand end of the 
sheet.? The new tip vortex is placed at  the centroid of x(1) and x(2)  and has 
circulation equal to the combined circulations of the original pair. 

The calculation then proceeds, amalgamation taking place whenever 8 > 8,. 
In  effect, vortices which try to get too far into the inner spiral are absorbed into 
the tip vortex, whereas the outer turns o f  the spiral have at  least N vortices on 
each. 

In  practice it was found that 0, = go", corresponding to 4 vortices per turn, 
was adequate to prevent chaotic motion, whereas 0, = 120°, corresponding to 
3 vortices per turn, was not. 

For obtaining details of the early stages of roll-up Westwater's discretization 
was used, As discussed in I, this places a restriction on the time step at*, 

dt* < n2MF.  (2.1)  

However, for studying the later stages o f  the motion a discretization in which 
the subdivisions are of equal length is preferable. This mode of subdivision gives 
better definition of the middle portion of the sheet and, because the minimum 
orbital period of any pair of constituent vortices is increased, enables larger 
time steps to be used. The orbital period of the tip vortex and its nearest neighbour 
is less than the circulation period at  a radius equal to their separation of a single 
vortex containing all the circulation. This circulation period is 4n2r2/r, where 
r is the separation of the tip vortex and its nearest neighbour and I' is the total 
circulation. But for the distribution (1.1) I' = 2Ua and r N a/N.S Thus one must 
ensure that dt* satisfies 

dt* < 27~2M-~,  (2.2) 

a less restrictive condition than (2.1). 

3. Discussion and results 
It is not easy to estimate the error introduced by the amalgamation process 

described in $2.  That some error is inevitable is clear from an examination of 
its effects on the invariants of the motion. It can be shown that, if (Ki> are the 
vortex strengths, 

t In  many of the calculations symmetry about Oy was imposed. This proved not to 
affect the results, which were very accurately symmetric anyway, and saved computing 
time. 

$ It is not exactly a/M, because the vortices are at the vorticity centroids, not the 
geometric centres of the subdivisions. 
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FIGURE 1. Comparison of spiral shape a t  t* = 2.0. x ,  equispaced, M = 60, 19, = goo, 
dt* = 2 x 0, equispaced, M = 60, 8, = 30°, dt" = 2 x lo-*; 0, equal strengths, 
M = 30, 8, = 90°, dt* = 5 x A, equispaced, M = 45, 0, = 70°, dt* = 2.5 x 10-3. 
The tip vortex is denoted by 0 and its position was vir tudy the same in all cases. The 
dashed line joins the vortices in their original order. The arrow marks the position of the 
instability. 

are invariants of the motion. The first but not the second is preserved by the 
amalgamation process.? 

The best evidence that this error is not serious is provided by the consistency 
of calculations with different values of 8, and a comparison of results from calcula- 
tions with three different values of Oe is shown in figure 1. Evidently the details 
of the outer part of the spiral are not sensitive to the choice of 8,. As might have 
been anticipated, the run with largest M and greatest 0, gives the most informa- 
tion about the shape of the spiral. There are indications of an instability, which 
it is plausible to identify with Kelvin -Helmholtz instability, at the position 
marked by the arrow. The vortices in one run can be seen to  be departing from 
the position of the sheet as defined by the other runs. The role of Kelvin- 
Helmholtz instability is discussed further below. 

Figures 2 , 3  and 4 give the shape of the spiral a t  various times, the right-hand 
half of the sheet being displayed. The axes are those defined in 3 1, though for 

t Both invariants were computed and found to be sensibIy constant between amdgama- 
tions. This provides a check on the accuracy of the numerical integration. 
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FIGURE 3. Spiral shape at t* = 1.0. 8, = go", M = 60, dt* = 2 

vortices initidly equispaced. 
x 10-3, 

convenience x/a and y/u are plotted rather than x and y. The centre of the sheet 
descends with a velocity initially close to U ,  though it subsequently decelerates. 
The tip vortex descends much more slowly, having initially ascended slightly. 
It is worth recalling that if the sheet rolled up into two line vortices these would 
have x co-ordinates k $nu or & 0.785a and would descend with speed 

2 q l =  + @2U.  

The results are consistent with these rough estimates. 
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FIGURE 4. Spiral shape at  t* = 7.0. 0, = go", M = 60, dt* = 2 x 
vortices initially equispaced. 

Several other features of these results may be noted. 
(a) The stretching of the vortex sheet as it enters the spiral is made apparent 

by the separation of the constituent vortices, which were (except for the run 
which led to figure 2 (a)) initially equally spaced. 

( b )  The results (figure 3) at t* = 1.0 can be compared with those of Chorin & 
Bernard. The unphysical features noted in their results are not present here, 
although the agreement between the two calculations is in general quite fair. 

( c )  In  contrast to Chorin & Bernard's findings, spiral structure persists until 
large times. The results (figure 4) for t* = 7.0 (the largest time considered) show 
a tendency for the turns of the spiral to be elliptical rather than circular while 
the stretching, as evidenced by the vortex spacings, does not increase mono- 
tonically. However, it is not clear how accurate the calculations are at such large 
times and in view of the large amount of computing required (about 15 min on 
the CDC 6600) it was not possible t o  support these results by comparing different 
runs. 

(d )  It is remarkable that there is so little sign of Kelvin-Helmholtz instability, 
and one must conclude that it is inhibited. The growth rate of instability for 
a uniform vortex sheet is proportional to the wavelength of the disturbance, so 
that in a point-vortex representation the growth rate is that corresponding to 
a wave of length comparable with the distance between neighbouring vortices. 
(A precise calculation is given in Lamb 1932, p. 225.)  Thus, increasing M in- 
creases the likelihood of encountering Kelvin-Helmholtz instability and the runs 
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FIUURE 5 .  Spiral at t* = 0.25 with 0, = go", M = 98, dt* = 10-8, showing instability. 

with M = 60 show some signs of this, particularly the run with 6, = 30". The 
instability is not in the rolled-up part of the sheet, where perhaps it is reduced by 
the rapid stretching, but occurs between the rolled-up and unstretched parts of 
the sheet. Professor P. G. Saffman has proposed an interesting explanation of 
the location of the Kelvin-Helmholtz instability. In  the initial state of the 
vortex sheet the vorticity w(s)  is a monotone increasing function of the arc dis- 
tance s measured from the centre of the sheet. However, at  any subsequent time 
it is known from Kaden's analysis that w -+ 0 as the centre of the spiral is 
approached. Thus once the spiral forms w must have a maximum at some inter- 
mediate value of s. Examination of the results of the computations show that, 
for the times of interest, the maximum value of w ( s )  occurs in the same regian 
as the Kelvin-Helmholtz instability, tending to confirm Professor Saffman's 
explanation. 

The magnitude of the disturbance must reflect the magnitude of the perturba- 
tions to which the vortices have been subjected. Now each amalgamation causes 
an instantaneous small change in the velocity field a t  the other vortices, so that 
the amalgamation process itself creates perturbations. The run with 0, = 30 has 
involved more amalgamations than the other runs, which may explain why it 
shows most signs of Kelvin-Helmholtz instability. (I am indebted to Mr J. H. B. 
Smith for this explanation.) 

The conjecture that increasing M promotes instability is supported by the 
results for a run with M = 98 and 0, = 90". Instability was evident as early as 
t* = 0.25, and in fact by t* = 0.5 chaotic motion had set in. The result for 
t* = 0.25 is shown in figure 5. 

The quantity of most interest is the rate of roll-up of the sheet. To make this 
precise, one can arbitrarily define the rolled-up portion of the sheet to be the 
portion between the centre of the spiral and the point at which the tangent is 
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FIGURE 6. Tho fraction f of vorticity rolled up as a function oft*. The straight dashed line 
is the similarity law of equation (3.1). 

last parallel to  Oy. Figure 6 ,  which is the principal result of this paper, shows the 
fraction f of the total vorticity which is rolled up as a function oft*. Clearly roll-up 
is initially very rapid, 50 yo of the vorticity being in the rolled-up portion a t  
18 = 0.12. 

According to Kaden's analysis, for t* < 1 one should have 

f = gt**, (3.1) 

where g is a constant. The dashed line on figure 6 is obtained by choosing g so 
that agreement is obtained at  t* = 0-01. Evidently (3.1) is an adequate approxi- 
mation for t* < 0.1. 

It is worth noting that close approach of vortices on neighbouring turns did 
not cause trouble in the calculations reported here. Possibly this is because the 
tip vortex is providing the dominant contribution to the velocities of individual 
vortices, so that close approach does not lead to disruption. 

It is of interest to convert the results obtained for the rate of roll-up into 
aeronautical terms, relating the two-dimensional unsteady flow to the three- 
dimensional steady flow behind the wing in the usual approximate way. For 
an elliptically loaded wing with root circulation Po, one has 

u = ropa, (3.2) 

where 2a is now the wing-span. Thus the characteristic time a/U is 2a2/r0. For 
a Boeing 707, a = 23m and a value of r0 appropriate to  cruising at 270m/s 
at 10 km altitude can be roughly estimated to be 3.5 x lo2 m2/s. Thus the charac- 
teristic time is about 3.5 s and roll-up is 50 yo complete in about 0-35 s, or just 
over 2 spans behind the wing, while roll-up is 90 yo complete only at  about 7 s, 
or about 1 km behind the aircraft. 

This work has benefited greatly from the discussions I have had with Professor 
P. G. Saffman and from his comments on the first draft. 
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